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Understanding the etiology of antisocial behavior (i.e. violence,

criminality, rule-breaking), is essential to the development of

more effective prevention and intervention strategies. We

provide a summary of the genetic correlates of antisocial

behavior, drawing upon findings from behavioral, molecular, and

statistical genetics. Across methodologies, our review highlights

the centrality of environmental moderators of genetic effects, and

how behavioral heterogeneity in antisocial behavior is an

important consideration for genetic studies.We also review novel

analytic techniques and neurogenetic approaches that can be

used to examine how genetic variation predicts antisocial

behavior. Finally, to illustrate how findings may converge across

approaches, we describe pathways from genetic variability in

oxytocin signaling to subtypes of antisocial behavior.
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Antisocial behavior (AB), including aggression, violence,

and rule-breaking, is highly prevalent (e.g. 6.4% of men in

the US) and has serious negative financial, social, and

emotional costs for society, perpetrators, victims, and

their families [1,2]. Environmental adversity across con-

texts (e.g. families, peers, neighborhoods) and genetic

risk factors jointly predict the emergence and mainte-

nance of AB [3–5]. The current paper provides a brief

review of genetic approaches to studying AB, including

behavioral (i.e. twin, family studies), molecular (i.e. gene-

behavior, gene x environment [GxE] interaction), and

statistical (i.e. genome-wide association studies) genetic

approaches. This review focuses on findings that have

been replicated and/or reported in meta-analyses and/or
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highlight promising new methodologies. Finally, we

demonstrate how the integration of findings across

approaches can inform our understanding of the role

genes play in the development of specific subtypes of

AB, by describing pathways within one neurotransmitter/

peptide system (i.e. oxytocin) using multiple approaches.

Heterogeneity in AB
Youth engaging in AB are a heterogeneous group in terms

of the onset, duration, and severity of their behaviors.

Research has increasingly examined subgroups of youth

involved in AB, who share behavioral features and etiol-

ogy. One prominent subtyping approach focuses on the

age of onset (i.e. early versus late-onset), with early-onset

(i.e. before age 10) antisocial youth showing a more

chronic and escalating trajectory of AB and high familial

risk (e.g. harsh parenting) [6��]. Youth with the early-

onset subtype are hypothesized to have greater genetic

risk factors for AB compared to youth with the adolescent-

onset subtype who have a less severe trajectory of AB

[6��]. A second subtyping approach distinguishes youth

based on the specific forms of AB that the youth engages

in (i.e. aggression versus rule-breaking). Of note, this

grouping largely overlaps with the age of onset distinc-

tion, as early-starting youth are most likely to commit

aggressive acts [7].

A third approach focuses on the co-occurrence of psycho-

pathic traits in adults and callous-unemotional (CU) traits

(i.e. reduced empathy, interpersonal affect, and guilt) in

youth [8]. AB in the presence of CU traits has a unique

neuroetiology, including a potentially different genetic

pathway to AB [9��], and is linked to higher levels of AB.

Thus, given potential differences in etiology, examining

subtypes of AB is key to understanding and integrating

findings across behavioral, molecular, and statistical

genetic approaches.

Behavioral genetic approaches
Twin, sibling, family, and adoption study designs rely on

the principles of genetic inheritance to decompose the

variance in AB due to environmental and genetic factors.

Thus, behavioral genetic studies provide an estimate of

the relative contribution of genetic processes involved in

AB, but cannot identify specific genetic markers for AB.

For example, a twin design assumes that monozygotic

(MZ) and dizygotic (DZ) twins reared together share

environments; differences in phenotypic similarity can

thus be attributable to differences in shared genetic

material (i.e. MZ twins share 100% and DZ twins share
www.sciencedirect.com
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50% of their DNA) or nonshared environment. Using

twin designs, meta-analyses indicate that heritable effects

explain nearly 50% of the variance in AB, while shared

and nonshared environmental effects account for roughly

14% and 37%, respectively [10].

However, these estimates belie the complexity of AB, as

genetic and environmental effects vary drastically by AB

subtype and developmental stage. For example, aggres-

sion (e.g. physical fights) is more heritable (65%) and

under less environmental influence (5%) than rule-break-

ing (e.g. property theft) (additive genetic: 48%; shared

environment: 18%) [11]. Similarly, relatively higher heri-

tability estimates have been reported for AB with CU

traits (81%), than AB without CU traits (30%) [12].

Moreover, meta-analyses have found larger genetic

effects for AB that emerges earlier in development

[10,11], with evidence from longitudinal designs indicat-

ing that genetic risk for AB in early childhood partially

accounts for heritable contributions to AB in later devel-

opmental stages [13] (Table 1). Thus, genetic effects on

AB are qualified by subtype and time of onset.

Adoption studies can also separate genetic etiology from

environmental factors by studying families in which the

child is genetically unrelated to the rearing parent(s). In
Table 1

Novel approaches to studying genetic risk for antisocial behavior

Type of approach Description of approach 

Longitudinal

biometric modeling

Leverages longitudinal data and Cholesky

decomposition models within a twin sample 

estimate genetic and environmental influence

on AB at multiple developmental stages.

Biologically-informed

polygenic risk

scores

Additively combines genetic variants within

biologically-relevant systems to create one

polygenic risk score (PGS). This approach

draws upon previous cross-species research 

identify which genetic variants increase risk fo

the outcome under study. The resultant PGS

can also be weighted using k-fold cross-

validation methods with the individual geneti

variants in the same or another sample.

Gene-set analyses Examines the joint effects of multiple SNPs

within a biologically-relevant set of genes. A

genotyped SNPs within the identified gene

regions are included in the analyses.

Genome-wide

polygenic risk

scores

Genome-wide polygenic scores (PGS) captu

the cumulative influence and predictive abilit

of multiple SNPs across the genome for a give

phenotype. PGSs are constructed as weighte

sums of the effect alleles, where weights are

drawn from previous GWAS meta-analyses i

independent samples.
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one example, severe AB of biological parents predicted

greater child CU traits (i.e. the heritable effect), whereas

greater positive parenting by the adoptive parent pre-

dicted lower child CU traits (i.e. the independent envi-

ronmental effect) [14�]. This type of behavior genetic

approach is critical as it addresses the potential for gene-

environment correlation (e.g. parenting may be related to

child aggression via genetic pathways, rather than the

parenting itself) found in much observational (and GxE

interaction) research [15].

Molecular genetic approaches
Most molecular genetic studies of AB have employed a

candidate gene approach by examining associations

between genetic variants (e.g. single nucleotide polymor-

phisms [SNPs]) and AB. Researchers have typically

focused on genetic polymorphisms that are involved in

dopaminergic and serotonergic neurotransmission, due to

their roles in emotion, reward, and learning-processes that

are often impaired in AB [16].

Altered levels of dopamine, an excitatory neurotransmit-

ter that is involved in the neural reward system, may

contribute to the heightened reward sensitivity charac-

teristic of many forms of AB [16]. While there have been

no meta-analyses to date, several studies have found
Empirical example(s)

to

s

In two large twin cohorts totaling more than 10,000 twin pairs,

one study examined the longitudinal stability of aggressive

behaviors from ages 7 to 12. Genetic influences on AB at

younger ages largely explained the genetic variance in AB at

later ages. The results also suggest, however, that there may

be different genetic risk factors for AB that emerges at

different developmental stages [13].

to

r

c

A sample of 8834 participants from the Add Health study, [50]

combined six genetic variants from dopaminergic,

serotonergic, and catecholamine catabolizing genes (e.g.

DAT1, MAOA) into a weighted PGS. Higher polygenic risk was

associated with persistently high AB from age 13 to 32, and,

among males only, school connectedness moderated the

association between polygenic risk and longitudinal AB

profiles.

ll

In a sample of �2000 children from the Generation R Study, a

dopamine gene-set composed of 12 genes and 151 genetic

variants, was significantly associated with greater

externalizing behaviors, but only among children exposed to

low levels of harsh parenting [51].

re

y

n

d

n

One study constructed PGSs in two adolescent and young

adult samples using weights from a GWAS of a latent

externalizing behavior in adults; polygenic risk predicted

externalizing behavior and impulsivity in both samples, but

peer influences moderated the genetic effect among

adolescents [33]. Another recent study [32] found that a lower

PGS for educational attainment was associated with greater

risk for criminal offending and life-course persistent AB in two

birth cohorts.
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associations between dopaminergic genes, including

dopamine receptors (e.g. DRD2, DRD4) and the dopa-

mine transporter gene (e.g. DAT1), and AB in adults and

adolescents [17]. Additionally, greater circulating seroto-

nin, a neurotransmitter involved in mood regulation, is

associated with poor impulse control and irritability,

which are characteristic of AB [18]. AB has been linked

to the short-allele of the serotonin transporter polymor-

phism (5-HTTLPR) in a meta-analysis [19], and to

variation within serotonin receptor genes (e.g. 5HTR2A,
5HTR1B, 5HTR2C), as well as the monoamine-oxidase-A

(MAOA) gene, which catabolizes monoamines including

serotonin [17].

However, a large body of research suggests that the

effects of genetic variation on AB are conditional on

environmental experience (or vice versa) [15]. In a

GxE interaction, genetic variation predicts AB only in

the context of specific environmental factors (e.g. harsh

parenting). Many studies have tested interactions

between genetic variants within genes underlying
Table 2

Summary of genome-wide association studies of antisocial behavior 

Author information Population (N, age) Phenotype 

Tielbeek et al. (2017) Discovery: N = 16,400,

Replication: N = 9381; Mean age

range across cohorts = 6.7–56.1

years

Broad-spect

across coho

Dick et al. (2011) Discovery: N = 3,963, no

replication sample; Age

range = 18–77 years

Retrospectiv

IV CD symp

control statu

Pappa et al. (2015) Discovery: N = 18,988, no

replication sample; Mean

age = 8.44 years; Age range

across cohorts = 3–15 years

Predominan

child aggres

Salvatore et al. (2015) Discovery: N = 1,379,

Replication: N = 1796; Mean

age = 43.8 years; Age

range = 18–79 years

Symptoms o

Viding et al. (2010) Discovery/stage 1 sample:

N = 600 (n = 300 high- and

n = 300 low-AB/CU),

Replication/stage 2 sample:

N = 586 (n = 293 high- and

n = 293 low-AB/CU); Age = 7

years

Teacher-rate

problems an

Rautianen et al.

(2016)

Discovery: N = 5,850,

Replication: N = 3766; ASPD

cases mean age � 34 years;

controls � 56 years

Clinical diag

AB = antisocial behavior; CD = conduct disorder; CU = callous-unemotional
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dopamine and serotonin function as well as catechol-

amine catabolism (e.g. DRD4, 5-HTTLPR, MAOA) and

environmental risk factors (e.g. neighborhood disadvan-

tage, parenting behaviors) [20,21]. Moreover, meta-anal-

yses have supported MAOA and 5-HTTLPR GxE inter-

actions as predictors of AB [22,23] (Table 2).

There are still several limitations to GxE interaction

studies. First, as numerous environmental factors are

associated with later AB [3–5], more work is needed that

accounts for multiple environments (GxExE) and multi-

ple genes (GxGxE) [24]. Second, underpowered studies

often fail to detect significant effects and/or produce non-

replicable findings [25]. Novel molecular genetic

approaches, including biologically-informed polygenic

risk scores and gene-set analyses, may address these

limitations by moving beyond single genetic variants to

characterize genetic risk within functionally relevant

systems (Table 1). Third, demographic factors including

race, sex, and SES, may moderate GxE associations

[24,26�]. Fourth, accounting for heterogeneity within
and related phenotypes

Major finding(s)

rum AB that varied

rts

No genome-wide significant associations in the

total sample, but there were suggestive sex-

discordant associations (for females, Chr 1:

rs2764450, Chr 11: rs11215217, and for males,

Chr X, rs41456347) [52].

ely-reported DSM-

toms, and CD case/

s

Four SNPs reached genome-wide significance:

Chr 4: rs16891867, rs1861046, Chr 11:

rs7950811, and Chr 13: rs11838918. The SNPs

on Chr 2 were in the gene C1QTNF7, which

encodes a tumor necrosis factor-related

protein [53].

tly parent-reported

sive behavior

One genome-wide significant association on

Chr 2, rs11126630, located between genes

LRRTM4 and SNAR-H, which regulate

excitatory synapse development and

transcription processes, respectively [31].

f DSM-IV ASPD No genome-wide significant associations. The

top suggestive SNP on Chr 7, rs4728702, was

in the ABCB1 gene, which encodes a

transporter protein; this suggestive association

did not replicate in the replication sample [54].

d conduct

d CU traits

No genome-wide significant associations. In

the stage 2 analysis, 14.2% of the top 3000 hits

from stage 1 were significantly associated with

being classified as high AB/CU. Several top

SNPs were located near neurodevelopmental

genes (e.g. ROBO2) [30].

nosis of ASPD No genome-wide significant associations.

Suggestive associations were replicated on

Chr 6, within the gene region of the major

histocompatibility complex, previously linked to

other psychiatric disorders and expressed in

cerebellum tissue [29�].

; ASPD = antisocial personality disorder.
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Table 3

Summary of previously-reviewed candidate gene x environment interactions examined in relation to antisocial behavior and related

phenotypes (see citations 20, 21 for a full review)

Gene Environments Results from meta-analyses and/or reviews

Dopamine genes

DRD4

Dopamine receptor D4

Neighborhood crime

Maternal insensitivity

Parental rearing practices

Early maternal care

Maternal hostility

Maternal sensivitiy

Harsh parenting

Parental criticism

Parental separation/divorce

Socioeconomic status

Neighborhood disadvantage

Prenatal stress

Negative and positive parenting

Nine studies found significant interactions for DRD4 � family

adversity in predicting externalizing behaviors; two studies found

larger effects in the short-allele carriers; seven studies found

larger effects in the long allele carriers; three studies had null

findings [21].

DAT1

Dopamine active transporter 1 gene

Adverse childhood environment

Parental criticism

Family closeness

Prenatal smoking

Negative and positive parenting

Maternal expressed positive

emotion

Peer rejection

Maternal warmth

Low birth weight

Neighborhood disadvantage

Neighborhood crime

Two studies found significant interactions for DAT1 � family

adversity in predicting externalizing behaviors; one study found

this effect in carriers of the 9-repeat allele; one study found this

effect in carriers of the 10-repeat allele; two studies had null

findings [21].

DRD2

Dopamine receptor D2

Parental incarceration

Parental separation/divorce

Neighborhood disadvantage

Family closeness

Neighborhood crime

Three studies found significant interactions for DRD2 � family

adversity in predicting AB, with all effects larger in carriers of the

A1 allele; one study had null findings [21].

DRD5

Dopamine receptor D5

Low birth weight

Prenatal smoking

One study found significant interaction for DRD5 � prenatal risks

(lower birth weight and maternal prenatal smoking) in predicting

AB with larger effects in the carriers of the 5-repeat allele [20].

Serotonin genes

5-HTTLPR

Serotonin-transporter-linked

polymorphic region in in SLC6A4,

the gene that codes for the serotonin

transporter

Disadvantaged environments

Socioeconomic status

Maternal unresponsiveness

Maternal stress and depression

Adverse childhood environment

Parental criticism

Chronic life stress

Maternal expressed positive

emotion

Maternal warmth

Harsh parenting

Meta-analysis found an overall significant interaction found

between 5-HTTLPR and environmental adversity, but was unable

to demonstrate whether the significant interaction effect was

driven by the short or long allele [23].

Catecholamine catabolism genes

MAOA

Monoamine oxidase A

Childhood adversity

Childhood maltreatment

Childhood physical and sexual

abuse

Neighborhood characteristics

Deviant peer behavior

Deprivation

Parental involvement

Parental discipline

Parental care

Prenatal smoking

Leaving school

Parental incarceration

Inter-parental violence

Adolescent victimization

Early stressful life events

Meta-analysis found low activity MAOA � childhood

maltreatment specifically predicted increased AB and this

association was stronger in males; some evidence that high

activity MAOA � childhood maltreatment predicts increased AB

preferentially in females [22,55].

www.sciencedirect.com Current Opinion in Psychology 2019, 27:46–55
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Table 3 (Continued )

Gene Environments Results from meta-analyses and/or reviews

COMT

Catechol-O-methyltransferase

Maternal stress

Socioeconomic status

Childhood maltreatment

Childhood physical and sexual

abuse

Parental separation/divorce

Prenatal smoking

Four studies found significant interactions for COMT � family

adversity in predicting AB; two studies found the effect was

stronger in the Val carriers; two studies found the effect was

stronger in the Met carriers [21].
AB, such as the co-occurrence of psychopathic or CU

traits, is vital to disentangling potentially differential

developmental trajectories. For example, the long allele

of 5-HTTLPR, which has been linked to reduced amyg-

dala reactivity, may be a risk factor for psychopathic or CU

traits. The short allele, related to increased amygdala

reactivity, may instead be a risk factor for impulsive

aggression and AB more broadly [27]. Finally, few studies

have accounted for development, which is critical to

understanding the genetic foundations of AB, as the

impact of environmental factors also vary on the timing

of the experience [24,28].

Statistical genetics approaches
Another approach to studying genetic risk factors for AB is

through hypothesis-free genome-wide association studies

(GWAS). A GWAS examines whether individual differ-

ences in a phenotype are associated with allelic differ-

ences in hundreds of thousands, to millions of SNPs

across the genome. Table 3 displays a selection of existing

GWAS of AB. Notable genome-wide and/or suggestive

associations have been found in genes related to immune

functioning [29�] and neurodevelopment [30,31], though

these genetic variants have not been replicated across

GWAS.

Small sample sizes and the heterogeneity in AB pheno-

types may underlie the non-significant findings in GWAS

of AB. Complex human behaviors like AB result from the

cumulative impact of many genetic variants, each of small

effect. Thus, huge sample sizes are needed to detect

genetic effects — sample sizes that have not yet been

reached in GWAS of AB. Moreover, phenotypes have

ranged from teacher-report of conduct problems to clini-

cal symptoms antisocial personality disorder — with little

attention to subtypes of AB (though see [30]), which may

obscure the genetic etiology of different forms of AB.

Though the utility of GWAS for gene discovery related to

AB is currently limited, existing GWAS of other, related

phenotypes, can provide cumulative measures of genetic

risk for AB using genome-wide polygenic scores (PGS).

This approach addresses molecular genetic limitations

associated with examining single genetic variants. By

constructing weighted sum scores of the effect alleles

from relevant GWAS in independent samples, recent

research has found that low PGS for educational
Current Opinion in Psychology 2019, 27:46–55 
attainment and high PGS for substance use and antisocial

behavior predicts life-course persistent/early-starting AB

[32] and greater AB in adolescents that may be contingent

on environmental adversity [33] (Table 1).

Neurogenetic approaches
Neurogenetics integrates methods across multiple levels

of analysis (e.g. genetics, neuroimaging, behavior) to test

pathways through which genetic variation in neurotrans-

mitter systems impacts neural processes that contribute to

AB [34,35]. Thus, neurogenetics focuses on the mecha-

nisms of how genes potentiate risk for AB. Cross-disci-

plinary research from animal and human studies (e.g.

MRI, EEG, pharmacological) can help to identify the

neural regions, neurotransmitters, and genetic risk factors

related to AB. Neural regions of interest are identified by

their associations with discrete behavioral phenotypes

central to AB including abnormal responses to fear and

threat (e.g. amygdala), disinhibition (e.g. prefrontal

regions), and increased reward sensitivity (e.g. striatum)

[9��,36]. As genetic variation in serotonin and dopamine

signaling have been linked to neural function within the

amygdala, prefrontal cortex (PFC), and striatum, neuro-

genetics can provide plausible mechanistic pathways by

which specific genes affecting these neurotransmitter

systems lead to increased risk for AB.

For example, impulsive AB (without CU traits) has been

associated with greater amygdala reactivity, hypo-activa-

tion in prefrontal regions (e.g. orbitofrontal cortex/ven-

tromedial prefrontal cortex), and weaker amygdala-PFC

connectivity [9��,36]. These patterns of activation are

thought to reflect hypersensitivity of the amygdala to

emotional cues (particularly to fear), and blunted regula-

tion of amygdala function by prefrontal regions. The low-

activity MAOA variant (which inefficiently catabolizes

serotonin, potentially resulting in greater circulating sero-

tonin; though see [37], which suggests this effect may be

restricted to certain neurodevelopmental stages) has been

associated with these neural patterns characteristic of

impulsive AB — greater amygdala activation and reduced

connectivity with prefrontal regions during affective pro-

cessing [38,39] (see Figure 1a).

Neuroimaging studies have also revealed robust associa-

tions between AB and hyper-activation of the ventral

striatum (VS), which is implicated in reward-related
www.sciencedirect.com



Genetic influences on antisocial behavior Gard, Dotterer and Hyde 51

Figure 1
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Gene x Environment
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Gene x Environment
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Candidate Gene Studies
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dopamine [38]
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amygdala-prefrontal
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[38,39,41]
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OXTR is expressed in
corticolimbic regions

including the
amygdala and

hypothalamus [47].
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OXTR has been
linked to prosocial

behavior and
empathy [43]
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methylation of OXTR,
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conformational

changes in the DNA
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gene expression [46].

OXTR methylation
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psychopathy [44,45]
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transcription of OXTR
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circulating oxytocin.
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processing [48,49]

Antagonistic
interpersonal style

(Callous-
unemotional
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(a)

(b)

Current Opinion in Psychology

Pathways from genetic variation in the oxytocin receptor gene and monoamine oxidase A gene to differential components of antisocial behavior.

(a) Integration of findings across genetic methodologies demonstrates how alterations in monoamine oxidase A gene (MAOA) functioning may

predict later impulsive aggression. Genetic variation in MAOA was originally linked to antisocial behavior (i.e. violence, aggression) using linkage

analysis (an early family-based behavior genetic approach) in a large Dutch kindred characterized by high levels of violence across generations

[56]. Researchers identified a mutation in MAOA that essentially functioned as a knockout, resulting in reduced expression of MAOA [56]. MAOA

knockout models in mice indicate that the absence of MAOA results in increased reactive aggression and deficits in fear learning [38]. While the

mutation observed in the Dutch kindred is rare, the low-activity variant of MAOA has also been associated with reduced MAOA expression in vivo

[38] (though see [37]). As MAOA degrades catecholamines such as serotonin, reduced MAOA expression is associated with elevated levels of

www.sciencedirect.com Current Opinion in Psychology 2019, 27:46–55
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behaviors and learning [9��]. Using a biologically-

informed polygenic risk score approach, one study

reported that a mulitlocus genetic risk score for dopamine

signaling (e.g. SNPs within DRD4) was associated with

greater reward-related VS reactivity [40]. Future studies

should integrate this polygenic risk score approach

(Table 1) to test whether genetic variation in dopami-

nergic signaling predicts AB via alterations in reward-

related circuitry.

Though genetic variation within serotoninergic and

dopaminergic signaling has been linked to amygdala

and striatum function, few studies have attempted to

link these associations to AB as well as integrate mea-

sures of environmental adversity to test ‘Imaging Gene

x Environment’ (IGxE) interactions [28]. IGxE models

posit that brain structure and function mediate the

paths from GxE interactions to psychopathology. In

one recent example, men with the low-activity MAOA
variant who were also exposed to childhood maltreat-

ment showed greater amygdala reactivity, weakened

amygdala-prefrontal cortex coupling, and greater reac-

tive aggression and AB [41��] (see also [42��]). Taken

together, these findings support the brain as a potential

mechanism through which genetic variation is related

to AB and emphasize the importance of incorporating

measures of risk across multiple levels of analysis (see

Figure 1).

Integration across genetic methodologies
Integration across genetic methodologies is key to delin-

eating the pathways through which genetic variation can

impact specific forms of AB. As an example, the peptide

oxytocin, which functions as a hormone and a neurotrans-

mitter, influences the expression of prosocial and affilia-

tive behaviors that are often impaired in AB [43�]. Pre-

liminary evidence across genetic approaches suggests a
(Figure 1 Legend Continued) serotonin, which could then shape activation

evaluation and emotion regulation, though these effects may happen neurod

studies have linked the low activity MAOA variant to increased amygdala ac

emotion processing [38,39]. However, environmental factors, specifically ea

MAOA variation and antisocial behavior in both animals and humans [22,39

a pathway from genetic variation in MAOA to impulsive aggression via alter

adversity. (B) Integration of findings across genetic methodologies demonst

may predict later CU/psychopathic traits. First, genetic variation within the O

amygdala [46] has been associated with behavioral phenotypes, such as em

hypothesized that OXTR variation impacts social behavior via lower circulat

methylation of OXTR, which suppresses gene transcription [46] and is asso

psychopathic traits [44,45]. Lower circulating oxytocin in corticolimbic regio

could, in turn, impact related cognitive processes and behaviors. Imaging g

variation as well as methylation of OXTR and disrupted corticolimbic functio

neural correlate of AB [48�,49��]. Moreover, environmental factors likely inte

corticolimbic function, given associations between the development of CU/p

maltreatment and low parental warmth [44], although no studies have yet ex

these findings, OXTR functioning (determined by genetic variation and epige

cognition at the level of the brain (i.e. diminished activation in regions of the

interpersonal contexts, and result in an antagonistic interpersonal style (CU/

Current Opinion in Psychology 2019, 27:46–55 
pathway from variation within the oxytocin receptor gene

OXTR (i.e. via genetic variation or epigenetic methylation

of this receptor) to affective components of AB, such as

psychopathic or CU traits, via disrupted corticolimbic

function (Figure 1b). Genetic variation within OXTR
has been linked to prosocial behavior and empathy

[43�]. Greater OXTR methylation (which results in less

gene expression) has also been associated with lower

plasma oxytocin [45] and greater CU traits in adolescents

with concurrent AB [44,45]. In relation to the brain,

animal models indicate that OXTR is expressed in the

amygdala [46] and, in humans, oxytocin availability has

been associated with amygdala reactivity during socio-

affective paradigms [47]. Using a neurogenetics approach,

one study found that genetic variation in OXTR was

related to AB via greater amygdala reactivity to threat

[48�]. Another study found that greater methylation of

OXTR and increased CU traits in adolescence interacted

to predict reduced activation of frontoparietal regions and

disrupted connectivity with the amygdala during emotion

processing [49��]. Thus, findings from across studies

suggest that genetic or epigenetic variation in OXTR
may increase risk for AB via impacting brain systems

relevant to prosocial behavior. However, these pathways

appear to be modulated by environmental factors. For

instance, one study found that prenatal parental risk

factors were associated with OXTR methylation at birth,

which was then predictive of higher levels of CU traits in

adolescents [44]. These studies therefore show a potential

pathway through which genetic variation in OXTR may

predict affective components of AB (e.g. psychopathy,

CU traits) related to social cognition (e.g. empathy) via

reductions in corticolimbic activation (Figure 1b). Inter-

estingly, a separate though related line of integrative

research suggests that MAOA variation may predict neural

and behavioral phenotypes associated with impulsive, not

callous, AB via increased corticolimbic activation
 and connectivity within corticolimbic regions involved in social

evelopmentally, early in life [37]. Indeed, previous imaging genetics

tivation and reduced amygdala-prefrontal cortex connectivity during

rly life stress, have been shown to moderate the associations between

]. Taken together, these findings across genetics approaches highlight

ations in neural function that are dependent on environmental

rates how alterations in oxytocin receptor gene (OXTR) functioning

XTR, which is expressed in corticolimbic regions including the

pathy, that are relevant to antisocial behavior (AB) [43�]. It is

ing plasma oxytocin [43�,47]. Studies have linked increased epigenetic

ciated with less circulating oxytocin, to higher levels of later CU/

ns may disrupt the functioning and connectivity of these regions, which

enetics studies have begun to examine associations between genetic

n (e.g. amygdala reactivity), which has been previously identified as a

ract with genetic variation to predict later CU/psychopathic traits via

sychopathic traits and harsh interpersonal contexts such as

amined this imaging gene x environment interaction model. Based on

netic methylation) may impact emotional processing and social

 corticolimbic system), which may be further exacerbated by harsh

psychopathic traits).
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stemming from decreased modulation by prefrontal

regions (Figure 1a).

Conclusions
Genetic variation clearly plays an important role in the

development of AB, as demonstrated by substantial her-

itability estimates from twin studies and replicated asso-

ciations within specific candidate genes (i.e. MAOA).
However, genetic effects are also qualified by environ-

mental influences (which may themselves exert larger

effects than single genes) and may vary by the type of AB

measured and the age of measurement. The current body

of work is limited by single candidate gene and GxE

interaction studies that often utilize small sample sizes

and imprecise measures of AB. Further, GWAS has not

been able to identify any single gene(s) linked to AB,

emphasizing the need to look for biological substrates

through which genes may indirectly impact AB. Novel,

integrative approaches, including neurogenetics and

IGxE studies, represent exciting potential avenues to

better understanding the mechanistic processes through

which genetic variation predicts AB.
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